

6.1 (*Naturality of the exponential map*). Let (M, g_M) and (N, g_N) be smooth Riemannian manifolds and let $\Phi : M \rightarrow N$ be an isometry. For any $p \in M$, prove that the following diagram is commutative:

$$\begin{array}{ccc} T_p M & \xrightarrow{d_p \Phi} & T_{\Phi(p)} N \\ \downarrow \exp_p & & \downarrow \exp_{\Phi(p)} \\ M & \xrightarrow{\Phi} & N \end{array}$$

6.2 Let (M, g) be a smooth *connected* Riemannian manifold.

(a) Suppose that $\Phi_1, \Phi_2 : M \rightarrow M$ are two isometries such that, for some $p \in M$:

$$\Phi_1(p) = \Phi_2(p) \quad \text{and} \quad d_p \Phi_1 = d_p \Phi_2.$$

Prove that $\Phi_1 = \Phi_2$.

(b) Let $X \in \Gamma(M)$ be a Killing vector field of (M, g) for which there exists a point $p \in M$ such that

$$X|_p = 0, \quad \nabla X|_p = 0.$$

Prove that $X = 0$.

6.3 Let (M, g) be a connected Riemannian manifold, and let $N \subset M$ be a smooth submanifold of M .

(a) For any $p \in M$, we will define the distance of p from N to be

$$d(p, N) = \inf \{ \ell(\gamma) : \gamma : [0, 1] \rightarrow M \text{ is a } C^1 \text{ curve, } \gamma(0) = p, \gamma(1) \in N \}.$$

Assume that, for a given $p \in M$, a minimizer for $d(p, N)$ exists, i.e. there exists a C^1 curve $\gamma : [0, 1] \rightarrow M$ such that $\gamma(0) = p$, $\gamma(1) = q \in N$ and

$$\ell(\gamma) = d(p, N).$$

Show that γ is a geodesic of (M, g) and $\dot{\gamma}(1)$ is normal to $T_q N$.

(b) Let q_1, q_2 be two points on N and let $\gamma : [0, 1] \rightarrow N$ be a C^1 curve such that $\gamma(0) = q_1$, $\gamma(1) = q_2$ and $\ell(\gamma)$ is minimal among all curves connecting q_1 to q_2 in N , i.e.

$$\ell(\gamma) = \min \{ \ell(\bar{\gamma}) : \bar{\gamma} : [0, 1] \rightarrow N, \bar{\gamma}(0) = q_1, \bar{\gamma}(1) = q_2 \}$$

Prove that, for any $t \in [0, 1]$, there exists a parametrization of γ for which

$$\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t) \text{ is orthogonal to } T_{\gamma(t)} N \subset T_{\gamma(t)} M$$

(where ∇ is the Levi-Civita connection of (M, g)).

6.4 (a) Let $(\mathbb{H}^2, g_{\mathbb{H}})$ be the Poincare half plane (see also Exercise 5.2): $\mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ and

$$g_{\mathbb{H}} = \frac{dx^2 + dy^2}{y^2}.$$

Let also \mathbb{D}^2 be the unit disc in \mathbb{R}^2 , equipped with the metric

$$g_{\mathbb{D}} = 4 \frac{dx^2 + dy^2}{(1 - x^2 - y^2)^2}.$$

Identifying \mathbb{R}^2 with \mathbb{C} , show that the map $\Phi : \mathbb{D}^2 \rightarrow \mathbb{H}^2$ given by

$$\Phi(z) = -i \frac{z + 1}{z - 1}$$

is an isometry ($(\mathbb{D}^2, g_{\mathbb{D}})$ is known as the *Poincaré disc*; both $(\mathbb{H}^2, g_{\mathbb{H}})$ and $(\mathbb{D}^2, g_{\mathbb{D}})$ are models for the hyperbolic plane).

(*b) Let p be a point in the hyperbolic plane. Compute the metric in polar coordinates around p . *(Hint: Working in the Poincaré disc model, it suffices to only consider the case when p is at the origin, since any point $p \in \mathbb{D}^2$ can be mapped to any other point in \mathbb{D}^2 via an isometry. What are the geodesics in $(\mathbb{D}^2, g_{\mathbb{D}})$ emanating from the origin?)*

(*c) How is the round metric $(\mathbb{S}^2, g_{\mathbb{S}^2})$ expressed in polar coordinates around a point $p \in \mathbb{S}^2$?